Multivariate temporal dictionary learning for EEG
نویسندگان
چکیده
منابع مشابه
Multivariate Temporal Dictionary Learning for EEG
This article addresses the issue of representing electroencephalographic (EEG) signals in an efficient way. While classical approaches use a fixed Gabor dictionary to analyze EEG signals, this article proposes a data-driven method to obtain an adapted dictionary. To reach an efficient dictionary learning, appropriate spatial and temporal modeling is required. Inter-channels links are taken into...
متن کاملDictionary learning for M/EEG multidimensional data
HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau...
متن کاملCovariance-domain Dictionary Learning for Overcomplete EEG Source Identification
We propose an algorithm targeting the identification of more sources than channels for electroencephalography (EEG). Our overcomplete source identification algorithm, Cov-DL, leverages dictionary learning methods applied in the covariancedomain. Assuming that EEG sources are uncorrelated within moving time-windows and the scalp mixing is linear, the forward problem can be transferred to the cov...
متن کاملLearning Spatial and Temporal Filters for Single-Trial EEG Classification
There is a wide variety of electroencephalography (EEG) analysis methods. Most of them are based on averaging over multiple trials in order to increase signal-to-noise ratio. The method introduced in this article is a single trial method. Our approach is based on the assumption that the ”real brain signal” of each task is smooth, and is contained in several sensor channels. We propose two stage...
متن کاملLearning Pattern Graphs for Multivariate Temporal Pattern Retrieval
We propose a two-phased approach to learn pattern graphs, a powerful pattern language for complex, multivariate temporal data, which is capable of reflecting more aspects of temporal patterns than earlier proposals. The first phase aims at increasing the understandability of the graph by finding common substructures, thereby helping the second phase to specialize the graph learned so far to dis...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Neuroscience Methods
سال: 2013
ISSN: 0165-0270
DOI: 10.1016/j.jneumeth.2013.02.001